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Abstract

In the report, the investigation of controlling helicopter-blade lead-lag vibration 1s
described. Current practice of adding passive damping may be improved to handle large
dynamic range of the blade with several peaks of vibration resonance. To minimize extra-
large damping forces that may damage the control system of blade, passive dampers
should have relatively small damping coefficients, which in turn limit the effectiveness.
By providing variable damping, a much larger damping coefficient to suppress the
vibration can be realized. If the damping force reaches the maximum allowed threshold,
the damper will be automatically switched into the mode with smaller damping
coefficient to maintain near- constant damping force. Furthermore, the proposed control
system will also have a fail-safe feature to guarantee the basic performation of a typical
passive damper. The proposed control strategy to avoid resonant regions in the frequency
domain is to generate variable damping force in combination with the supporting stiffness
to manipulate the restoring force and conservative energy of the controlled blade system.
Two control algorithms are developed and verified by a prototype variable damper, a
digital controller and corresponding algorithms. Primary experiments show good
potentials for the proposed variable damper: about 66% and 82% reductions in

displacement at 1/3 length and the root of the blade respectively.



Chapter 1

Introduction

In this report, we first review the state-of-the-art and state-of-the-practice technologies
for vibration reduction in helicopter blades, followed by details and research plan for
conducting a study on vibration reduction for helicopter blades. In addition, we present

the major research part; finally, we discuss briefly the future research.

The proposed research consists of four phases:

(1) Documenting the vibration performance of helicopter blades, reviewing the
current vibration reduction methods for helicopter blades, and evaluating criteria
and philosophies;

(2) Identifying major problems of the blade vibrations and discussing possible
solutions, new control strategies, and new devices;

(3) Conducting analytical and limited laboratory studies to develop an improved
understanding of helicopter blades under vibration, designing semi-active devices
and the corresponding control system design, testing the new control strategies,
validating them by experimental investigation, and developing the analytical
model for the damper and the system;

(4) Developing recommendations for improved vibration reduction devices and

control system design for helicopter blades.
Task 1 — Conduct Literature Review: Vibration Performance of Helicopter Blades
In this task, we conduct a comprehensive literature review to assess the state-of-the-art in

vibration control of helicopter blades. Then we identify and evaluate current published

literature from appropriate sources about the vibration performance of helicopters.



Task 2 - Identify of the Important and Key Issues

Subtask 2.1: Identify the Important Issues

Based on the literature review (Task 1), we identify several important issues requiring
further research and development. However, because of the limited funding available for
this project, addressing all the issues is unlikely under this research. Among the issues to

be reviewed are to:

(1) Clarify and verify the vibration sources in rotorcraft;

(2) Examine methodologies and mechanism of the vibration reduction in rotorcratft,
review existing and anticipated vibration control technologies to determine what
techniques are currently available for reducing vibration, and what new
technologies are being developed;

(3) Observe advantages and problems in current vibration reduction methods in
rotorcraft;

(4) Evaluate the performance of dampers (passive, semi-active, and active) the reduce
vibration in rotorcraft;

(5) Assess the possibilities of applying the semi-active control concept in rotorcraft;

(6) Implement a semi-active control system in rotorcraft, and improve the state-of-
the-practice damper design and manufacture;

(7) Improve control strategies in rotorcraft.
We review and discuss these and other issues identified during Task 1 and recommend
further research needs.

Subtask 2.2: Prioritize and Address Key Issues

Based on the above discussion, we identified a number of issues potentially important for
developing improved models, and as well as guidelines and criteria for improved design,

evaluation, and vibration reduction of helicopter blades.



We ranked and prioritized the final list of important issues as follows.
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Experimental setup for vibration testing of blades

Identification and evaluation of vibration phenomena for the blade, including
mode shapes, damping information, and frequencies

Design and manufacture of the new dampers

Development of control strategies in a semi-active control system

Development of experimentally based dynamic models for the blade

Validation and updating of the analytical simulation dynamic model, including

the finite element model.

Task 3 - Perform Analytical and Experimental Investigations

We propose to investigate the dynamic analysis of helicopter blades using a dual

experimental-analytical approach.

Subtask 3.1 — Experimental Investigation — The purpose of this subtask is to set up the

experiment to identify the vibration characteristics of helicopter blades, such
as the dynamic behaviors, modal densities, influence of boundary conditions,
etc. To simulate the performance of helicopter blades in “real” world, an
experiment has been set up carefully in the Dynamic Lab, SUNY at Buffalo.
The details will be shown later in this report. After accelerations are
measured with accelerometers at important points throughout the blade
under test, the displacements of the blade are calculated. Accelerometers
have measurement noise at the low frequency. Therefore, to avoid errors in
collecting the acceleration data and verifying the data and displacement
calculation from accelerometers, a LVDT (Linear Variable Differential
Transformer) is installed to measures the lead-lag displacement directly.
New software has been developed to measure the input and response signals
to produce the desired transfer function, and to instantaneously present the
vibration characteristics of the blade in the time domain and the frequency

domain.



Subtask 3.2 — Identification and evaluation of the vibration phenomena for the blade —
The experiment on the bare blade is conducted, and dynamic characteristics
of the helicopter blade are obtained. Based on the information of the mode
shapes, damping, and frequencies, etc, we design the semi-active control

device.

Subtask 3.3 — Design, manufacture and evaluation of variable dampers — we manufacture
and test the new type of the dampers. The vibration phenomena of the blade

equipped with the control devices are defined and analyzed.

Subtask 3.4 — Development of the experimental dynamic models for the blade —The
experimental dynamic models is generalized in terms of the major control
parameters. With a completely calibrated model, we characterize the

vibration reduction strategies.

Subtask 3.5 — Validation of the analytical simulation dynamic model — structural
identification is applied in this project: a finite element simulation model is

developed, and updated by experiment data.

Task 4 — Document Research Results and Prepare and Submit Final Report

Progress report is submitted at the end of the contract. The report contains a description

of all research conducted, and discusses the analytical and laboratory studies.

In this progress report, part 1 introduces the research tasks and organization of this report.
Part 2 presents the research literature review on vibration reduction in helicopter blades,
part 3 proposes our research study on control devices and control strategies, and part 4
shows the design and manufacture of the dampers. In part 5, we present the experimental
investigation on the blade behavior with/without the damper. We present several
conclusions and discussions based on the experiment investigation, briefly discuss future

research work.



Chapter 2

Literature Review

2.1 Introduction

The high level of vibration in rotorcraft causes problems, such as structural fatigue, pilot
fatigue, reduced rotorcraft stability and reliability, and increased costs of development

and maintenance. Also, the noise caused by vibration affects environmental acceptance.

One of the primary goals for vibration reduction of the rotorcraft is to control vibration
within acceptable levels using appropriate means with minimum weight penalty. The
barriers to vibration control are accurate prediction methodology and efficient vibration
reduction systems. The blade normally has three motions: inplane (lead-lag), out-of-plane
(flap), and torsion. Accurately predicting of the lag response is essential because this
response is a large contributor to the loads in the blade system. On the other hand, in
modern blade design, inplane natural frequency is lower than the rotor speed. This type of
rotor system, so-called soft-inplane rotor system, has several advantages, such as lower
vibration and hub loads, simpler hub system, and lower maintenance cost. However, the
inplane bending mode, or lead-lag mode, of the blade tends to be very lightly damped,
requiring a lead-lag damper to dissipate excessive lag motion. Normally, the lag mode

natural frequency is around 0.2 ~ S/rev; that is, about 2 ~ 30 Hz.

In the following sections, the vibration sources and current vibration reduction methods

are reviewed and discussed.

2.2 Vibration Sources

1. Aerodynamic loading on the blades and resonance amplification of the system



Because of the changes of speed and the angle of attack, alternating air forces act on
the blades once per revolution and at multiples of this frequency. If the frequency of
the transmitted force is near the resonance frequency of the system, a large
amplification of the force and amplitude of the tip motion may cause serious damage

may happen to rotorcraft.

2. Vibration caused by some other phenomena, such as blade-vortex interaction

The blade vortex interaction (BVI) causes increased vibration. Because of the
interaction between the blade and the tip vortex shed from the preceding blade, BVI
consists of vortex-induced loading. At the same time, BVI contains significant low
frequency unsteady aerodynamics, which causes substantial increases in low

frequency noise content.

3. Aeromechanical instabilities in ground resonance and air resonance

In ground resonance, the force associated with the lag motion reacts with the mode
landing gear, causing a huge hub motion. The motion of the hub further excites the
lag motion. Air resonance is a coupling of the rotor lag mode with a fuselage mode
while the helicopter is in high-speed forward flight. Since the lag mode is only lightly

damped, the instabilities can cause blade damage, and even system failure.

As a brief summary, we see the following:

e We may determine the vibration resonances ahead of time, so that we can use the data

as a reliable and easy way for vibration active and semi-active control;

e The ratios of maximum over minimum amplitudes as well as highest over lowest

frequencies of the blade vibrations render a large dynamic range;



e One of the key issues is that we need large damping to the blade system. Usually the
original system possesses only little damping. However, current state-of-the-practice

techniques do not provide sufficient damping because of the large dynamic range.

2.3 Vibration Reduction

2.3.1 Passive and Active Materials

Modification of structural properties has included increasing the damping and stiffness.
Damping can be increased with constrained-layer damping, damped-link, and interface
damping. Each of these treatments has demonstrated the ability to improve the dynamic
response of the structure. However, this response is limited to specific locations, modes,
or in specific operating conditions. Stiffness can be increased by increasing skin or spar
thickness or applying reinforcing members such as brackets, cleats, or doublers. By

modifying the stiffness, we can change the vibration characteristic of the blade.

The structures with piezoelectric layers have been investigated. Some research on
piezoelectric actuators showed that the piezoelectric actuators do not depend upon the
flow characteristics. The most active materials have employed either piezoelectrically
actuated flaps at specific locations along the blade, or piezoelectric materials distributed
along the blade to directly control deformations in the host blade. The primary constraint
in both approaches is the need to obtain high piezoelectric forces and displacements with
minimum weight penalty. Since these approaches must be designed to fit within the
geometric confines of the blade, they can cause the difficult installation and the
possibility of system failure. Some studies indicate the failure during the tests. Also, it
has been proved that direct control of blade twisting using embedded piezoelectric is
difficult to implement because of the high stiffness of rotor blades in torsion and
restrictions in the bandwidth capabilities of available active materials, and while
conventional approaches with passive damping materials minimize structural vibrations,

piezoelectric layers may add substantial amounts of weight to the structure.



Modern “smart” materials provide an opportunity for on-blade active control, possibly for
reduced weight and power. Shape Memory Alloy (SMA) can be trained to remember a
specific shape, which it changes back to when heated by an electric current. By arranging
the smart materials, some parts of the blade can be changed and moved. Some researchers
suggested that SMA can be used as active support struts. However, this method will make
the blade structure more complicated. Also, integrating of the smart material and
controlled structure is always a problem. The decision on how to optimize the blade
shape and how to achieve the target shape will be difficult to make. In addition, SMA

consumes more power than piezoelectric layer.

Many researchers have begun to explore the application of ACL (Active Constrained
Layer) [17]. ACL consist a layer of high damping viscoelastic material between a base
structure and a constraining layer. Nath, etc investigated the feasibility of ACLD (Active
Constrained Layer Damping) [26]. They concluded that ACLD was a likely candidate for
increasing the damping of the flexbeam. Recently, some researchers studied the
application of EACL (Enhanced Active Constrained Layer) damping treatments on the
flexbeam [1].

2.3.2 Passive Control Methods

To reduce the vibration level, current helicopters typically employ passive vibration
isolation and absorption. Passive control devices, which do not require a power source
and can store or dissipate the energy in the system, are inexpensive. However, these
devices are heavy, and have various other limitations, such as constant hub loading and

constant control parameter.

Passive techniques include optimized rotor blade geometry, tip speed reduction, increased
number of blades, and passive dampers. Rotor blade geometry characteristics such as tip
shape, thickness, airfoil shape, and blade number significantly impact the vibration level

of the blade.



It is crucial to ensure adequate lag-damping to alleviate vibration in ground-resonance
and air-resonance instability. Normally, passive lag dampers are implemented to add the
lag damping. However, passive lag dampers have drawbacks, such as high
damper/flexbeam loads, hub complexity, and constant control parameters.

Elastomeric lead-lag dampers have been used since 1970. These dampers, which
dissipate energy by shear motion of the rubber materials, have low weight, no moving
parts and no leakage problems [7]. They can reduce the cost of maintenance and the
complexity of the hub system. However, elastomeric shear dampers exhibit undesirable
nonlinear behavior that is highly dependent on frequency, displacement amplitude,
temperature, and loading path. Studies reveal that nonlinearities in the stiffness and loss
factor of the elastomeric damper cause the limit cycle oscillation [10]. With the small
displacement near the root of the blade, stiffness is high and the loss factor is low;
therefore, the damping available for the lag mode is low, and instability occurs. Also, the
nonlinearity of the elastomeric material brings the difficulty in theoretical analysis and
practical application. The lag motion in helicopter rotors occurs at two frequencies: the
lead-lag frequency and the l/rev frequency. Many studies show that under the dual
frequency excitations, elastomeric damper efficiency has been significantly reduced [10,
27]. Elastomeric dampers use shear motion to generate the lag damping force, limiting
the placement of the elastomeric damper in the hub zone. The way elastomeric lag
dampers are installed in the Boeing 360 rotor hub indicates smaller motion for the
elastomeric dampers than that of the hydraulic damper, limiting the capability of

elastomeric dampers.

A Fluidlastic snubber/damper is similar to an elastomeric damper except that it includes a
chamber which is filled with silicone fluid to provide lag damping [22]. The fluid adds
viscosity to the energy-dissipating component of the damper. The advantage of the
Fluidlastic damper is that its stiffness is nearly linear, which can eliminate the limit cycle

instability.



So far, many studies developed the nonlinear elastomeric damper model as those models
established by Gandhi and Chopra [10]. However, few models are associated with the

real elastomeric damper.

In past years, effort has focused on design and development of bearingless main rotors
for helicopter. The flap hinges, lag hinges, and pitch bearing are being replaced by
flexbeams. The flexbeams carry elastic bending and torsion to carry out the flap, lag, and
pitch movement. However, a lag damper is still needed to increase lag damping. Yet no
clear statement on what is the optimal damping has been addressed. In fact, in many other
areas, such as submarine, bridge, and automobile, etc, both experience and theoretical
analysis told us that when we need damping, for example, at the resonant region, the
larger the damping, the better the result. However, over-large damping may cause two
problems. First, because the stiffness of the blade and the fixture are not infinite, large
damping tends to become visco-elastic. In other words, when the damping coefficient or
its equivalent, becomes larger and larger, the entire system tends to deform and reform.
Energy will be stored and released. Such elastic behavior will decrease, not increase the
equivalent damping ratio eventually. Secondly, over-large damping may generate extra
damping force that may damage the blade-damper-fixture system. Large damping does
not necessarily mean heavy damper. If the above-mentioned two conditions allowed,

however, increasing damping would be a good strategy for blade vibration control.

2.3.3 Active Control Methods

Active rotor control technologies vary the configuration of the blade or rotor during
operation. Active rotor control techniques include higher harmonic control, individual

blade control, active trailing edge flap, etc.

Unlike a passive damper, which can only dissipate energy, the active control is able to
both add and dissipate energy from the system. The active control scheme is based on the
idea that in a linear system, one can superimpose two independent response quantities

such that the total response is zero. When applying this scheme to the helicopter vibration

10



reduction problem, the fuselage at selected locations is excited by controlled forcing,

such that the combined response of the fuselage will be minimized.

The primary disadvantage of active control system is that it typically has large power
requirements, which adds weight in the rotorcraft. Also, they can have unacceptable
failure modes; actuator failure would leave the rotorcraft system undamped. Active
systems in general are more costly, more complex, and may bring external energy into
the system, making which potentially unstable and therefore less reliable than passive

systems.

Research on swash-plate mechanisms resulted in development of HHC [23, 29]. For
higher-harmonic control, additional (higher) harmonics are added to the normal 1/rev
cyclic input. Selecting the appropriate harmonic and phase angle can change the loading
schedule and to reduce vibration level. HHC can reduce helicopter vibration level and
rotor noise levels, improving helicopter performance. Conventional HHC achieves higher
harmonic actuation of the swash-plate with considerable power penalty. Also,
experiments have shown that minimum-noise HHC schedules create high vibration levels

and vice versa.

While HHC is limited to having all blades follow the same higher-harmonic pitch
schedules, IBC (Individual Blade Control) allows each blade to follow its own pitch
schedule [14, 30]. Theoretically, IBC can provide nonharmonic pitch input; therefore, it
has much more flexibility than HHC. However, since those methods try to suppress
vibration by oscillating the blade at higher harmonics of the rotor speed, they will
generate unsteady forces to counteract the effects of air loads. These devices result in

weight penalty, complexity of control systems, and higher maintenance cost.
In trailing-edge flaps, a trailing edge flap at the outer part of the rotor blade is considered

[24]. A piezoelectrically driven discrete flap generates additional aerodynamic loads to

reduce the vibration level at the rotor hub. Because of their potential as lightweight, high

11



bandwidth actuators with low power requirements, trailing edge flaps can be considered a

good control method.

Smart control systems are being developed to detect and reduce vibration. A variety of
sensors are used to continually feedback the behavior of the system and the information
on vibration levels to a control system. The actuators can then add the forces accordingly

to reduce the vibration and noise level.

2.3.4 Semi-active Control Methods

Since an active control system requires an external energy source to power an actuator
that controls the structure, and passive dampers have the constant control parameters, the
semi-active control system can combine the advantages of both control systems. The
semi-active system uses external power only to adjust the damping and stiffness levels.
The controller determines the level of damping based on a control strategy, and
automatically adjusts the damper to achieve that damping. It needs less power source and

has variable control parameters.

Recently, controllable fluid dampers, such as an MR damper, are an attractive choice for
the lag damper [9, 13]. MR fluid consists of viscous-elastic plastic fluid containing
micron-sized particles. When the fluid is subjected to the magnetic field, the particles can
create chain structures parallel to the direction of the applied field. This effect 1s
reversible and fast in the order of milliseconds. An MR damper has many attractive
features, such as high yield strength, stable hysteretic behavior over a broad temperature
range, and low plastic viscosity. One of the advantages of an MR damper is that it can
continuously adjust the damping coefficient. However, current control theory fails to
prove the necessarity of such adjustment. Normally, when we need damping, the larger
the damping, the better the vibration reduction we can achieve. In other words, in most
situations, if not all, we need sufficiently large but not continuously adjustable damping.
When damping force becomes less important: for example, when the vibration is far from

the resonance region, damping is adjusted to be small to avoid extra wear-off. In fact, we

12



can simply switch off the damper. Still, no continuous adjustable damping is needed
(Constantinou and Symans). MR dampers have intrinsic nonlinear properties, which may
be undesirable. Also, it moderately depends on the temperature and strongly on the
applied field strength, lag motion amplitude, and excitation frequency. Leaking fluid in
MR dampers can cause serious physical damage to the human being and to the

environment.

The following table summaries some smart materials, including ER fluid.

Material Force | Motion | Frequency | Power | Pros Cons
Piezoelectric Med | Low High Low Sensor/ Less
actuator | effective
Magnetostrictive | Low | Med High Low Low Temp.
power sensitive
SMA High | High Low Med Large Low
force frequency
ER Fluids Low | Med Med-Low | Med Lower Passive
cost force

Although variable damping is attractive in principle, it has problems with respect to
varying the damping by using admissible control law. Many researchers suspect its
effectiveness. In most cases, the larger the damping is, the smaller the vibration level will
be. Therefore, the damping in a structure should not be varied but should be kept at the

highest value possible [4].

The other way to achieve semi-active control is through variable stiffness approach.
Kobori et al. [15] proposed and installed an active variable stiffness (AVS) system on a
full-scale building. Bobrow et al. [2] proposed an active truss element. This truss element
can vary its stiffness. Its control diagram is shown in Fig 2.1. The conventional control

diagram is shown in Fig 2.2 for purpose of comparison.
The corresponding control law is to switch the auxiliary stiffness at each point when the

vibration displacement reaches its peak value. In this way, the auxiliary stiffness can

absorb the maximum deformation energy, then dump the energy out when it is switched

13



off. The power needed is only to change the configuration of the hydraulic valve. This
control system is believed to be stable in the sense of energy dissipation by nature.
However, this statement is only valid for a free decay system, where no energy 1s added
after the initial stage. Earthquake excitation is a forced vibration; the control law (the
resetting logic) given by Borrow is not necessarily stable, in the sense of whether the
vibration level is reduced or enlarged. The reason is the possibility of overdraft since the

control law could not incorporate the input effect, especially for random inputs.

Lee et al. [16] had overcome the above difficulty and developed a new structural control
strategy, Real-time Structural Parameter Modification (RSPM). The basic idea of RSPM
is to vary the dynamic stiffness of a structure in real time. The principle of changing the
dynamic stiffness is to minimize the conservative energy of the structure [18, 19]. The
control algorithms consist of four levels of hierarchical controls. The device to realize the

control action is called functional switch, as shown in the control diagram Fig.2.3.

The power out from a controller is used only to change the configuration of the functional
switch, so that this control system is stable by nature. The possible overdraft, however,

can be eliminated by incorporating higher-level control algorithm.

Fig. 2.2, the diagram of typical active control, shows that from point A to B, then through
the feedback path to A again, forms a complete loop, which is the essence of the active
control. On the other hand, the switching type of "semi-active” control does not possess a
complete loop. The break of the loop is caused by the device. The input to a typical
device is often an electric signal determined from the feedback based on the structural
responses and issued by the controller. The electric signal commands the functional
switch to open/close or to vary the orifice. Since the device is not an actuator, no active
force can be generated by the device. Therefore, the device cannot actively affect the
behavior of the structure. In other words, the output of the device cannot be controlled by
the electric signal only. Quite often, it will not have any direct relation with the signal at
all. Therefore, the enclosure of the control loop does not exist. In this situation, it can be

very difficult to impose the active control law. In this sense, the "semi-active" control

14



does not behave like an active control, but close to passive control, since the force that

"generated" by the control device is passive in nature.

Although the response of a vibration system is not directly related to the status of a
control signal, it is directly related to the physical parameters and external excitations.
Changing the physical parameters (mass, damping and stiffness) will result in changing
the system response. Obviously, properly and adaptively changing the physical
parameters of the dynamic system in real time will result in reducing the system’s
responses. The RSPM actions refer to those actions that adaptively change the structural
parameters, similar to the reflections of a living system to external disturbances. These
actions are generated by combined operations of relevant structural elements and
strategically installed functional switches. The functional switch is an important
component in an RSPM control system. This special hydraulic device that can provide
different functions. It includes a rigid link to “switch on” (or connect) an additional
stiffness to the structure. It also can provide a “free condition” (or disconnect the
stiffness). It can, in the third case, modulate the damping coefficient to achieve a
specified damping. A separate publication is dedicated to the dynamic responses of the

functional switches.

Decision-making depends not only on the responses of the structure, but also on the state
of the excitation force. With the RSPM actions, the structure performs an adaptive
function against external excitations through a certain modification law, so that the
vibration is reduced. There are no external control forces in an RSPM control system
although the function switching provides a mathematical equivalent control force. This is
an important and extremely desirable feature in earthquake engineering applications.
RSPM control, or variable passive control, intends to express the nature of the system
having the ability of an active control system as traditionally defined but without the
demand for instant availability of power to operate large actuator in order to deliver

counter forces that must be applied by external means.

Stiffness modification is often used in most structural control applications because of its

15



effectiveness and its implemental ability. This report explains the essence of RSPM,
which modifies stiffness as well as damping and mass, with major emphasis on variable
damping and the dynamic characteristics of switching. In order to unveil the special
damping mechanism, an RSPM scheme with stiffness modification 1s examined. The

model of such a system is given in Fig. 2.4.

In Fig. 2.4, the entire mass M of a structure is lumped in the rigid block, which is
constrained by rollers so that it can move only in simple translation. Thus, the single
displacement coordinate x(t) suffices to define its position. The permanent and switched
stiffness are represented by the weightless spring K and AK, respectively. The damping is
represented by dashpot C. FS is the functional switch that realize the RSPM actions. The

sensors and decision making unit required in RSPM, are not shown or discussed here.

It can be shown theoretically that the proposed method of RSPM for variable passive
control can dissipate energy four times that of variable stiffness control. Practically, the
amount of energy dissipation will also depend on the reaction time of the functional
switch. Experimental data show that, if the natural frequency of a structure is around 2 to
3 Hz, or below that number, the time period of valve opening and force dropping should
be no longer than 30 to 40 milliseconds. This number can be easily achieved with
available technology. The frequency range is commonly concerned in earthquake
engineering. However, the natural frequency of rotor blade can be higher. Thus we need
shorter responding time for the blade experiments. So far, the quickest reaction time we
can achieve is about 2 to 3 milliseconds by using a very fast solenoid valve. For vibration
control on the rotor blade, it can be sufficiently fast and the energy dissipation can be
quite close to the theoretical value. As mentioned before, a large amount of energy

dissipation with relatively low force is one of the two major goals of this study.

In comparison to typical viscous damping with the same amount of energy dissipation,
the required force is in fact slightly higher, not lower than the viscous damping force.
However, since the viscous damping force is by nature a damping force that is

proportional to velocity, that force can contribute little to the force proportional to

16



stiffness. In many cases, such a spring force is needed to increase the overall dynamic
stiffness. In this regard, RSPM will improve greatly since the control force generated by
functional switches is in nature a spring force. Figure 2.5 shows conceptually that when
the spring force controlled by functional switches is separately considered, the RSPM
scheme can provide the maximum energy dissipation with given bounded forces and
displacements. In a later section, the corresponding increase of dynamic stiffness by

using the RSPM scheme will be given.

As mentioned before, if the control scheme is carried out only by the maximum energy
dissipation, shown in Fig 2.5, the total control can be unstable because of the
phenomenon of overshoot. RSPM thus will include a hierarchical control measure, using
a multi-ranked control loop. The first loop will be designed to achieve the maximum
energy dissipation possible, using a push-pull functional switch pair. The second loop,

which overrides the first loop, is designed to avoid the overshoot.

If more than one pair of functional switches are used, each pair can be treated as a local
control; the total control of all sets of functional switches is said to be global. The third
loop is the global loop that overrides the first two loops to achieve the optimal dynamic
stiffness for the entire structure. The fourth loop is used to guarantee the fail-safe

function. Details of this control principle are given in the separate publications [18, 19].

More details about the semi-active control devices and theories in this study will be

discussed later in this report.

2.4 Theoretical Analysis

Modal analysis is a method to construct a mathematical model of the vibration
characteristics of the system based on the collected experimental data. In the modal
analysis, the modal model must discover three main properties: frequency (resonance
frequency), damping (damping ratio), and residue (mode shape, magnitude, and phase).

The information about magnitude and phase of the system can be obtained by calculating
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the residue. Every mode shape is associated with the specific deflection of the system.

The frequency response functions (FRF) can be used to obtain those modal properties.

A process so-called curve-fitting is needed to estimate the modal properties to generate
an analytical function. In MDOF curve-fitting techniques, four methods can be used to
estimate modal properties: complex exponential, direct parameter, poly-reference, and
orthogonal poly-reference. The complex exponential uses a single response function from
one single reference location. The direct parameter uses multiple response function from
one single reference location. The poly-reference uses multiple response function from
one or more reference locations. The modal properties will show the overall influence of
all the modes in the frequency domain. The orthogonal poly-reference uses multiple
response functions for different reference location in the frequency domain. A software

package has been developed to do the curve-fitting in this project.

2.5 Summary

The problem of blade vibration is not adequately solved to our satisfaction. The
performances of various control methods do not sufficiently reduce the vibration level.
Yet relatively larger power, higher voltage, and heavier weight could still be further
reduced. The resonance problem still exhibits. Large dynamic instability is observed in
the system, even with the vibration reduction devices. Usually optimal damping for given
structures is the largest damping possible to be added. The reason why conventional
design cannot efficiently provide large damping is partially that current design standard is
based on worst scenario design for the safety issues. Due to large dynamic range of blade

vibration, most of the control devices cannot achieve the control goals.

In our research, our goals to reduce the vibration level are: First, we should avoid the
resonance by verifying stiffness; Second, adjustable damping makes it on-line-optimal to
reduce the blade; Third, the control devices should have a fail-safe mode with default
damping close to conventionally designed valve. More details will be given in the next

part.
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Chapter 3

Research on Semi-active Control Device

3.1 Introduction

In this chapter, we focus on the issue of adding damping to the blade systems, the

problem identified in the last chapter.

Before we begin to design the control system to reduce the vibration in rotorcraft, we
should keep in mind that the control system:

1. Should not cause too much weight penalty

Should not add the cost much for produce and maintain

Should not add the complexity of the helicopter system/control system

Should have high level of stability and robustness

hANEE e

Should have a safe function in case the control device itself is malfunction.

By examining the state-of-the-practice for vibration control on helicopter rotor blades, it
became clear that the problem is not adequately solved to our satisfaction. The
performances of various controls do not sufficiently reduce the vibration level. This study
is motivated to examine the blade vibration problem based on the experience of using

semi-active control to reduce seismic vibration.

3.2 Vibration Reduction Devices

Damper behavior can strongly influence the behavior of the rotors. Because the stability
of the rotorcraft, the blade load, and the in-plane motion are coupled with damper
properties, the damper should be carefully designed to reduce the vibration level of the

rotorcraft.

At least two important issues must be addressed in semi-active control: control principles

and control devices. Two types of hydraulic variable damping devices have been
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proposed by many researchers. First, Feng and Shinozuka [7] presented the varying
orifice. Mizuno [25] proposed an adjustable hydraulic damper that controls the damping
force by means of a flow control valve between two chambers of the hydraulic cylinder.
Patten and Sack [28] proposed a semi-active vibration damper, also adopting the
variable-orifice concept by using Lyapnov functions. Constantinou and Symans [4] have
studied another kind of variable-orifice damper, which regulates the secondary orifice.
Second, varying apparent viscosity of the fluid can accomplish variable damper. Electro-
Rheological (ER) fluid and Mageto-Rheological (MR) fluid can be used as this type of

damping matenial.

One way to achieve the semi-active control is to use a hydraulic damping mechanism for
variable damping. In this study, variable damper is proposed. By controlling the flurd
flow path, the different damping force can be provided. One fluid flow path is through
the small orifice, which can create the larger damping force. The other fluid flow path is
through a large channel, whose diameter is much larger than that of the small orifice. So,
in this state, a relatively smaller damping force is created. Therefore, the control device
can provide the variable damping to the structure, even when the structure has only small

amplitude of displacement.

The hydraulic resistance through an orifice is a function of the orifice flow area, the
apparent viscosity of the fluid goes by, and some other factors. The damping force is the
result of viscous friction arising from the passage of the working fluid through an orifice.
We will present the details in the mathematics model of the damper.

The schematic of the damper is detailed in the Appendix.

3.3 Control Strategies

From the Coleman diagram for frequencies (ground resonance analysis) in Figure 3.11[3],

we know that in the instability zone, whenever there is coupling of the modes, one mode

becomes unstable and the other mode becomes even more stable. Also, one mode will be
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more damped than the other one. As we know, normally the one that is less damped
becomes unstable. In a helicopter, the lag mode has lower frequency and is less damped.

Typically, the lag mode becomes unstable.

From the Coleman diagram for damping (ground resonance analysis) in Figure 3.2, we
know that with the increased rotor speed starting from the helicopter run-up from the
ground, the rotor must go into and out of the instability zones. When the rotorcraft is in
the instability zones, a large damping force is needed to reduce the vibration. When the
rotorcraft is out of those instability zones, a small damping force is needed to keep the
hub loads and fatigue loads small. Therefore, damping augmentation is required only in
certain flight situations, where a potential for instabilities occurs, such as ground
resonance and air resonance. In other flight regime, the strong damping force provided by
the passive damper or elastomeric damper to alleviate ground resonance and air
resonance produces excessively large periodic damper loads (due to periodic
flap/lag/torsion motions of the blade.). These loads increases fatigue loads and

maintenance cost, thereby reducing service life.

In some situations, the force in lead-lag direction is too high, if the damper keeps
providing high damping force, it may cause damper damage, and even the whole system
failure. Therefore, the variable damper, which can provide different damping force for
the different flight conditions, and increase damping when critical and provide less
damping if not necessary, would be a better candidate for the lag damper in the rotor
system. However, we must keep in mind that the support stiffness provided by the
connection between the damper and the blade is not infinite in the real world. Therefore,
if the rotorcraft is out of the resonance zone, and if the damper provides less damping
force, the total force provided by the damper and the connection stiffness is reduced,
which can cause the natural frequency of the hub to shift to the lower frequency. This
lower frequency may couple with some of the low natural frequency of the fuselage,
causing the resonance. Therefore, when we decide to také advantage of the out-of-
resonance-zone flight and provide less damping force, we must design the control

algorithm carefully to avoid the system’s falling back into the resonance zone.
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As we know, a dynamic system has three parameters, which can be used to change the
dynamic behavior of the system: mass, damping, and stiffness. In the helicopter blade, it
is not easy, if not impossible, to change the mass. Therefore, besides the damping, we can
change the stiffness to reduce the vibration level of the blade. The stiffness will shift the
natural frequency in the system. In this study, we propose to use the support stiffness to
achieve our goal. The support stiffness exists in the connection between the damper and

the blade.
We use the following control strategies in this study:

First, we vary the damping coefficient to keep constant damping-force. When the
vibration level is small, a large damping coefficient is used to ensure sufficient damping
effectively suppressing the vibration. When the vibration level is higher than a given
threshold, the damping coefficient is shifted to be small to guarantee that the combined

force does not to exceed the allowed level, and vice versa. .

Second, we change the supporting stiffness to avoid any possible resonance. That is,
when the blades start to rotate, the stiffness is high to achieve higher natural frequency.
When the rotating speed becomes higher and close to the natural frequency, the stiffness
is switched to be low to have another natural frequency, but lower than the driving

frequency. This portion of control is not completely tested.

Third, a fail-safe mode is considered as the default setup.

3.4 Summary

In this chapter, we discuss the new control strategies for the newly-designed variable
damper. Theoretically, we verify the concepts of the control strategies. In the next
chapter, we discuss the experimental investigation on the damper and the system. Based
on the test data and results, we can validate the damper and the control strategies from the

stand-point of experiment.
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Chapter 4

Design and Fabrication of the Dampers

In this chapter, we study several dampers. First, we use friction damper with fixed levels
of forcing functions as a tool to design variable dampers. We then use an in-house made
MR damper to search the limit of the effectiveness of variable damping as well as the
performance of the MR damper. We finally design and fabricate the proposed variable

hydraulic damper accordingly.

4.1 Friction Damper

If a friction damper is designed under an idealized condition; i.e. stead state vibrations, it
can provide the optimal damping. The reason is that the damping constitutions, namely
the relationship between damping force and damper displacement, is close to rectangular-
shaped energy dissipation. Therefore, an adjustable friction damper is first used to

determine the proper parameter of variable damper. Basically, it can:

(1) Verify the possibilities for applying the passive dampers.

(2) Discover the allowed blade’s the maximum damping force under sweep sine input,
upon which the designs of the semi-active damper are based.

(3) Discover the dynamic characteristic of the blade with a friction damper, the result

can be compared with the results from semi-active devices.
The details are shown in Figure 4.1. During the tests, the friction damper can be in three
states: completely fixed, loosened, and completely off. From the tests of friction dampers,
we know that the best design damping force for the semi-active damper is about 1000 Ib.

4.2 MR damper

The MR damper is designed to determine:
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(1) Possible application of the MR damper in reduction of the vibration for blade
(2) Dynamic characteristic of the MR damper

(3) Dynamic characteristic of the blade with MR damper

(4) Verification of the control system for the MR damper used in the blade system
(5) Comparison the experimental results with the results in the friction damper and

variable damper.

It is also used to study the possible limits of vibration reductions by adding damping to
the blade systems. It is found that the MR damper does vary the damper coefficient
continuously. However, two major problems present: first, its control range is relatively
small. By means of a simplified computer simulation, it is found that our MR damper
cannot deal with the large dynamic range of blade vibration sufficiently. Second, the MR
fluid we purchased is not quite stable. The viscosity of the fluid varies. Immediately after
a thorough shaking, it has the desirable damping force. But the viscosity decreases in
minutes. After two hours, the damper loses its performance. We did test the MR damper
with an MTS machine and the blade setup. Since the performance is not reliable, we shall

not discuss it in the later chapter.
The details of the MR damper are shown in Figure 4.2, Figure 4.3, and Figure 4.4.

4.3 Variable Damper

As mentioned before, the proposed variable damper is designed to achieve two goals.
First of all, it adds additional stiffness. This goal can be reached by the characteristics of
visco-elsastic behavior of the assembly of the damper and its fixture. During the motion
of the damper piston, energy is always stored and released by the deformation of the
fixture because the stiffness of the fixture is not as infinite. Such energy transformation
will actually add certain stiffness to the entire blade-fixture-damper system and will vary

the system’s natural frequencies. The second goal is to add damping.
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To achieve these two goals, the variable damper has two fluid paths. Path has a larger
diameter so that when a certain amount of hydraulic fluid is squeezed through this path,
energy is dissipated but not a very large amount. Because Path II has a considerably
much smaller diameter, much more damping force can be obtained when the large
amount of fluid flows through. In addition, since the damping force becomes larger, it
will deform the fixture to achieve additional stiffness. The special fixture is carefully

designed and fabricated.

The details are showed in attached drawings in the Appendix.

The prototype semi-active control damper is designed to have the following features:
Stroke: 0.1mm-25.4mm (0.004 inch ~ 1 inch)

Working damping force: 454 kg (1000 1b)

Working frequency: 1 — 50 Hz

Response time: 10 ms
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Chapter S

Experimental Investigation

5.1 Introduction

The experimental investigations are focus on the following aspects:
1. Dynamics characteristics of the new-designed hydraulic damper
Dynamics performance of the blade with/without the damper

Advantages of the new-designed hydraulic damper

> w

Lessons we learn from the experiment investigations

Based on these aspects, we carry out the experiment investigations. We design and
conduct the experiment setup, including excitation methods, boundary condition, sensor
layout, and setup of the data acquisition system. After we obtain the experimental results,
we have the dynamic characteristics of the damper, and the performance of the blade with

damper. W can then compare the results, and draw conclusions.

5.2 Excitations

Two input methods are used in the test. One way to excite structures is to use an electro-
dynamic shaker. A force sensor attached to the armature driving the test object is used to
define input force amplitude while a signal generator controls frequency. The shaker is
fixed to the ground, allowing the highest possible excitation levels. Since this type of
excitation mechanism is easily controlled in frequency and amplitude, it offers the best
overall accuracy. An alternative method is to strike it with a calibrated dynamic impulse
hammer. A force sensor mounted in the head of the hammer transforms the input force
pulse into an analogous waveform that contains the necessary amplitude and phase

information to completely describe the forcing function.
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In this project, both excitation methods are used. The shaker used in the test is Model
1068, Vibration Test System. It operates over a frequency range of 0- 5000Hz. The
power supply amplifier for the shaker is Techron 5515, Crown International, Inc. The

hammer is from PCB. The shaker setup is showed in Figure 5.1.

A new in-house software package is specially designed to generate the required sweep
sinusoidal signal and to extract the dynamic characteristic of the blade in the frequency
domain. We can specify the frequency ranges, the number of sine dwelling cycles, and
the amplitude of output. The output of the accelerometers from the blade is filtered first
by correlations integration, allowing us to achieve much higher signal-to-noise ratio and
virtually no leakage. If the shaker can be driven with sweep sine signals, it concentrates
all the energy in the frequency of the range of interest. Therefore, we can have much
more accurate data. Since in the sweep sine signal, we can collect more data when the
signal is around the resonance frequencies, and collect fewer data between the resonance
frequencies, the data can be collected much more efficiently and accurately. Figure 5.2

shows the screen of in-house software.

This in-house software package can also be used to simulate the aerodynamic behavior of
the blade in the flight condition. It can send out the signals from the low driving
frequency to the high frequency, then from high frequency back to low frequency, which
can simulate the rotorcraft running up in the ground, and going in and out of the
resonance zone. At the same time, a function in this software package allows us to set up
a switch signal. After the sweeping sinusoidal arrives at the switch frequency, a switch
signal (in voltage) will be sent out to the controller. By control algorithm, the controller
will send out a control signal to switch the fluid flow state between the small orifice and
large channel in the damper. In this way, we can observe the performance of the semi-

active damper. The notation “auto sweeping test” is used in this report for this function.
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5.3 Boundary Conditions

The boundary condition in vibration analysis directly impacts the modal characteristics of
the system. Two types of idealized supports for vibration testing are fixed support and
“free” support. In fixed support, there is a constrained attachment to some no-motion
bases. “Free” support simulates of the structure floating free in space with air lifting
force. Since in the “real” world, the blades are fixed with the hub, so the fixed support
system is use in the test. Only lead-lag motion rotation in the large hole of the blade is
allowed. The homemade bolt in the large hole of the blade is allowed only +0.010 inch.
Note that, in the real flight condition, the helicopter blade will have the distributed lifting
loads along the blade in flap and lag directions, and a centrifugal force in the axial
direction. Because of the limitation of the experimental equipment and lab space, we only
use the centralized lifting load in 1/3 length of the blade from the tip. Four rubber jump
cords are used as the hanger to lift up the blade. The height of the blade away from the
ground can be controlled by the chain, which is connected with the jump cords. No

centrifugal force is simulated in this study.

The blade is cantilevered to the steel bases at the end of the blade. The steel bases are
fixed on the concrete ground, a five-cell reinforced concrete box girder 40 ft long, 60 ft
wide, and 8 ft overall in height. The thickness of the top test floor slab is 18 inches. Tie-
down points consist of 4x2% inch symmetrical holes. Each tie-down point has an axial

load allowable capacity of 250 Kips. Figure 5.3 and Figure 5.4 show the details.

To reduce the influence of the shaker on the blade, a stinger between shaker and blade 1s
used and it must be carefully chosen. The stiffness and length are the important
parameters. If the stinger is too long, it can vibrate laterally; if too short, the behavior of
the shaker and stinger will be added into the blade and mixed with the dynamic behavior
of the blade. In this case, the data are not accurate. After several trials, the stinger, whose
length is 14.5 inches and diameter is 5/32 inch, is chosen. An aluminum base is used to
connect the stinger and the blade. The curve of one side of the aluminum base is

fabricated according the shape of the leading edge of the blade. Two aluminum bases,
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one for the hammer test, and the other for the shaker test, are glued with the leading edge

of the blade.

5.4 Node Layout

The node layout is detailed in Figure 5.5. The placement of the exciters and the sensors
are chosen properly to excite all the modes of interest are excited, and unique geometrical
description of the mode shapes. Improper node layout may cause wrong dynamic
characteristics of the blade. To obtain sufficient accuracy and readability of modal
shapes, the blade has been discretized in 14 points, which are also constrained by the

number of channels in filter and conditioners.

There are two load cells in Node 9 (Y direction) and Node 2 (X direction). The sensitivity
for the load cell in Node 9 is 20 1b/Volt; the one for the load cell in Node 2 is 10001b/Volt.

5.5 Data Acquisition

The accelerations on the blade have been measured by using a set of PCB accelerometers
mounted on a small plastic base. The curves were specially manufactured according to
the shape of the leading edge of the blade. The plastic bases are glued on the blade, and
the accelerometers are screwed onto the plastic base. The masses of the plastic bases and

accelerometers are very small compared to that of the blade.

The linear variable differential transformers (LVDT) are used in displacement
measurements. The scale for the LVDT in Node 2 and Node 9 is 0.2 inch/Volt. Low-pass

filter is used to avoid signal aliasing.
The in-house software package and Virtual Bench (National Instrument) are used to

collect the experimental data. Virtual Bench collects the dynamic response in the time

domain, such as acceleration and displacement from accelerometers and LVDT. The in-
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house software collects the data in the frequency domain, including magnitude of the

vibration, frequency, phase, etc.

A controller system is designed to implement the control strategy according to the
response of the blade. This controller system includes a computer with control algorithm,
a controller box for receiving the control signals and sending out the signals to the
directional control valve in damper, and a power supply for the controller box. The

control signal is either O volts or 12 volts. Figure 5.6 shows the controller setup.

Figure 5.7 shows the data acquisition system and Figure 5.8 shows the picture.

5.6 Damper Mechanism

Figure 5.9 shows the damper in the blade.

When the power for the directional control valve is on (12 volts), the large fluid flow
channel (diameter: 0.386 inch (9.80 mm)) is open and the damping force will be small.
When the power is off, the large fluid flow channel is closed and the fluid must flow
through the small orifice (current used diameter: 0.037mm), creating a larger damping
force. The size of orifice can be chosen according to the damping force and dynamic
behavior of the rotor system. Also, the volume control needle valve, which is in the same
flow path as the directional control valve, can be used to manually adjust the speed and

volume of the fluid flow and create the different damping forces.

For convenience, in this report, “small orifice” and “large channel” are used to describe
the two different control states. At the same time, “off” is used for the “small orifice”
state in the plots, since the power is off in this state, and “on” is used for the “large

channel” state, since the power is on in this state.
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The diaphragm can be used to absorb hydraulic shocks, compensate for leakage, and
improve the stability of the damper by dampening the flow fluctuations. The check valves
allow free flow in one direction while preventing flow in the reverse direction. When the
pressure in the cylinder is lower than that in the diaphragm, the fluid can flow from the
diaphragm to the system. However, the fluid cannot flow in the reverse direction from the
system to the diaphragm by the check valves. If the pressure in the system is too high, the
relief valves will open and the fluid can flow to the diaphragm. The relief valves offer

stable performance and fast response.

5.7 Experimental Results

5.7.1 Component Test of the Hydraulic Damper

To investigate the characteristics of the hydraulic damper, component tests of the damper
are conducted on MTS axial-torsion testing machine. This machine is capable of biaxial
testing of specimens. Control modes available are force, strain, and displacement in axial
mode. The machine has calibrated ranges of 100, 50, 20, 10 Kips, and +5, 2.5, #1, and
+0.5 inch axially. In this study, displacement control is used. The displacements are 0.01
inch (0.254 mm), 0.02 inch (0.508 mm), and 0.03 inch (0.762 mm), respectively. The
component tests include the performance of the damper in 1 Hz, 2 Hz and 4 Hz frequency

sinusoidal inputs.

The force-displacement relations of the damper in the small orifice state and in 1 Hz, 2
Hz and 4 Hz are shown in Figure 5.10, Figure 5.11, and Figure 5.12, respectively. The
force-displacement relations in the large channel state and in 1 Hz, 2 Hz, and 4 Hz are
shown in Figure 5.13, Figure 5.14, and Figure 5.15, respectively. The upper plot shows
the force-displacement relation, the middle plot shows the displacement signal in the time

domain, and the lower plot shows the force signal in the time domain.

The comparisons of the force-displacement relations between the small orifice and large

channel in each frequency and displacement are shown in Figure 5.16, Figure 5.17, and
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Figure 5.18, respectively. Table 5.1 lists the comparison of damping energy ratios. The
damping energy is the area that one cyclic force-displacement can cover. These ratios can
show us the damping capacities of the damper under the different excitations (different

frequency and different amplitude).

Table 5.1 Comparison of Energy Ratio

Small Orifice Large Channel
Energy Energy

(kips-inch) (kips-inch) Ratio
1 Hz, 0.01 inch 0.0049 0.0033 1.51
1 Hz, 0.02 inch 0.0189 0.0053 3.56
1 Hz, 0.03 inch 0.0487 0.009 5.41
2 Hz, 0.01 inch 0.0088 0.0026 3.34
2 Hz, 0.02 inch 0.0436 0.0057 7.71
2 Hz, 0.03 inch 0.1251 0.0078 16.08
4 Hz, 0.01 inch 0.0195 0.0025 7.84
4 Hz, 0.02 inch 0.1138 0.0051 22.42
4 Hz, 0.03 inch 0.2015 0.0076 26.53

From the test data, we know that the variable damper achieves the control goals and can
be installed in the blade for the further test. The ratios are increased with the increasing
amplitude. With the different frequency, the small orifice energy has dramatic change,
and the large channel energy has little change. Also, based on the damping constitution,

we can design the fixture between the damper and the root of the blade.
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5.7.2 Helicopter Blade Test

The blade test has three courses. The first is with the large diameter fluid path only,
denoted by “large”. The second is with the small diameter fluid path denoted only by

“small”. The third is with the variable damper control denoted by “control”.

Figure 5.19 shows the displacement of the blade with the variable damper, which is
located in 1/3 the length of the blade away from the tip. Figure 5.20 shows the
displacement of the damper. Figure 5.21 shows the displacement in the location of the
accelerometer in the tip, which is calcula_ted from the acceleration data. It is clearly seen
that: first, the large channel test and the small orifice test exhibit distinct natural
frequencies. During the large channel test, we can visually identify that the peak response
resonates at 2.8 Hz. In the small orifice test, the resonance frequency is 6.5 Hz. These
figures indicate that our first strategy of varying the stiffness works. Second, from Fig
5.19, we can roughly see that in the large channel test, the system presents smaller
damping ratio, which is about 28.6%. Since we use the small fluid path in small orifice
test, comparably much higher damping ratio is achieved, which is about 84%. In the
control test, we use the computer to identify the threshold of switching frequency and
thus apply the controlled damping/restoring forces to the blade. Clearly the amplitude of
the controlled response is significantly reduced from the large channel state to the small
orifice state. With the control, the peak value of the displacement measured at 1/3 length
of the blade is about 0.21. Without the control, the amplitude is about 0.72. The

uncontrolled responses are about 3 to 4 times larger.

The displacements of the blade and the damper in auto sweeping tests are shown in
Figure 5.22 and Figure 5.23. The auto sweeping tests also consist of the small orifice test,
large channel test, and control test. From these figures, we can see the same reductions on

the displacement of the blade and the displacement of the root of the blade.

These facts imply that our second strategy can work with the variable damper. In real

helicopters the stiffness of the damper assembles may be quite different from our test.
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Here, we only conduct the proof-of-the-concept test; reasonable questions may arise that
in real situations the variable damper may still achieve the additional stiffness to avoid
resonance. In the large channel test and the small orifice test, the damping ratios are quite
high. In real cases, according to the literature, it will be only 5%. In such a condition, if
we can achieve 20% difference in natural frequencies, we can successfully avoid the
phenomena of resonances.

It is noted that these large damping ratios, 28.6% and 84% respectively for different
modes, are not only contributed by the variable damper, but affected by the
aforementioned boundary conditions. Such a boundary condition is not realized in real
applications. Instead, in real circumstance, the damping energy dissipating contributed by
the blade system is rather small. It is also noted that, if possible, we would rather use
smaller damping contributed by the boundary conditions. The smaller that portion of
energy dissipation is, the larger difference of the two pre-set damper modes can be
achieved. However, in the lab conditions, we have to deal with that large damping, which

in fact makes the test less effective.

5.8 Summary and Discussions

(1) Control strategies review: the damping force can be switched according to the

different flight situation, while the stiffness can be switched accordingly:

e When the vibration of the blade approaches to the resonance region from driving
lower frequency, additional stiffness should be switched off. When the vibration of
the blade approaches the resonant region from driving higher frequency, additional

stiffness should be switched on. In this way, we successfully avoid resonances;
e In real flying conditions, as the speed of the rotation varies, the vibration of the

blade may pass through several resonance regions. The proposed control strategy

will apply to all of them if the frequency shift can distinguish the resonance points;
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e There are two methods to determine the switching threshold of the frequency. First,
the resonance frequencies are determined by the driving frequency, namely, the
speed of the blade rotations. Therefore, the information on blade speed will be sent
to the controller; with the pre-knowledge of the blade’s natural frequency, the
switching functions are conducted. Second, we use sensors and the computer to
online identify the driving frequency, but identification takes time. We always have
room for the calculation because the driving speed does not immediately reach the
resonance. We can always have pre-knowledge of the trend of the approaching

period.

o When resonance can not be avoided; for example, when two natural frequencies are
too close to be switched, we add large damping to the system. Again, the boundary
conditions are different from a real flight. The test data show that extremely large
damping will not be true in real situations. From the component test, the damper
can dissipate efficient energy to achieve large damping ratios of about 84% in our
tests. However, as mentioned before, the fixture of the damper as well as the entire
elasticity of the blade will not provide efficient stiffness to achieve such a high
damping ratio in real conditions. Nevertheless, with this primary testing style, we
feel comfortable that our variable damper can contribute larger damping than

commonly used ones.

e The reason we are comfortable in providing large damping can be explained again
in more detail. In normal situations, when large damping applies, smaller vibration
level can be achieved. The resulting damping force roughly a product of the
damping coefficient and vibration velocity, will not be very large. Thus, large
damping should be used. However, if for some reasons the vibration level starts to
grow and finally becomes quite large, the damping force with large damping
coefficient will become very large without control efforts. It can be too large to be
allowed in the blade-damper-hub system, since an overly large force may damage

the blade system; therefore, for safety, the damping coefficient cannot be too large.
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Of course, by doing so, we will not have large damping but large vibration. With
the variable damper, the initial damping coefficient is designed to be as large as
possible, if the stiffness of the fixture and blade can support such a damper.
Therefore, in normal conditions, we will have considerably large damping and
small vibration. If in the worst scenario, the vibration becomes too large and the
damping force may damage the system, the large damping ratio is switched off

immediately to prevent the damage.

The hydraulic damper can provide large damping force even in the small lag motion.
In the small orifice state, the displacement of the damper is 0.003 inch (0.076 mm),
and the displacement of the blade (1/3 length of the blade away from the tip of the
blade) is 0.04 inch (1.016 mm). In the large channel state, the displacement of the
damper is 0.0164 inch (0.416 mm), and the displacement of the blade is 0.119 inch
(3.023 mm). The displacement of the damper is reduced 82%; the displacement of
the blade, 62%.

The small orifice state has the ability to provide enough damping energy

The manual needle valve provides a match for the dampers to different rotor

systems. Therefore, the dampers have better tracking ability.

This newly-designed damper is a fail-safe damper. Even if the switch damping

function fails, the damper still can act as the traditional passive damper.

Low power consumption and low voltage (12 Volts) are used to control the

variable orifice.

Therefore, this hydraulic damper has improved damper performance. It may potentially

reduce maintenance cost, lower hub loading, and achieve less fatigue, and improved

stability.
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Chapter 6

Future Research

Further studies may include:

1.

A fatigue test on the damper

A fatigue test is very important to ensure the reliability of the newly developed
damper. Although experience on the hydraulic cylinder, control valves, and
accumulator are available among many existing companies, the assembly of the
cylinder and the cartridge body in this special design is new. We thus plan to
conduct a thorough fatigue test. The test will apply 1000 Ib force at 20 Hz driving
frequency on the existing damper with/without control commands. External loads,
internal pressure, vibration velocity, damper displacement as well as frequency

will be recorded. The number of the test cyclic will also be recorded.

2. Further computational simulating to compare with other researchers’ work

¢ Develop mathematical model of damper;

e Optimal design of the controllers to maintain tracking performance, and
optimization of the control algorithms;

e Optimization study that evaluates the performance of the damper;

e Finite element-based analytical model of the blade with the hydraulic damper;

e Consideration of nonlinearity (global and local) in the analytical model.

Prepare for the flight test, including gathering the information on the helicopter

for installation of the damper, adjusting the damper and damper accessories,

setting up the new data acquisition system, etc. Online system Identification: the

transfer function estimate should be updated fast enough to slowly track

variations in the plant

Further develop the control software and hardware for practical applications.

Include the product of a software package about a modal analysis tool written in

MATLAB to exploit frequency domain measurements, to present the dynamic

characteristic of the blade, to simulate the blade performance, and to monitor the

blade under aerodynamic load. GUIs will be provided for visualization of

responses, frequency domain identification, animation of operational deflection of

modes shapes, and monitoring the blade damage, etc.

37



)

10.

REFERENCES

Alam, A.B., et al., “Optimization of enhanced active constrained layer treatment
on helicopter flexbeams for aeromechanical stability augmentation”, Smart
Materials and Structures, 8(1990), P182-196

Bobrow, R.C., Liang, X.Q., and Yang, J.S., “Shape control of vibrating stmply
supported rectangular plate”, Journal of AIAA, Vol. 34, No. 1, 1996, P116-122

Coleman, R.P., and Feingold, AM., “Theory of self-excited mechanical
oscillations of helicopter rtotors with hinged blades”, National Advisory
Committee for Aeronautics (NACA), Washington, D.C., 1958.

Constantinou, M.C. Symans, M.D., " Experimental study of seismic response of
buildings with supplemental fluid dampers,”, The Structural Design of Tall
Buildings, V 2 93-132, 1993

Cranley G. F. (1994), "Intelligent structure for space: A technology overview and
assessment, " AIAA J. V 32 N. 8 1994 pp.1689-1699

Felker, F.F., Lau, B.H., Mclaughlin, S., and Johnson, W, “Nonlinear behavior of
an elastomeric lag damper undergoing dual frequency motion and its effect on
rotor dynamics”, Journal of the American Helicopter Society, Vol. 32, No. 4, Oct.
1987.

Feng, M.Q., Shinozuka, M., and Fujii, S., "Experimental and analytical study of a
hybrid isolation system using friction controllable sliding bearings," Tech. report
NCEER-92-0009, NCEER, State University of New York at Buffalo, 1992.

Friedmann, P., Carman, G., and Millott, T. A., "Magnetostrictively actuated
control flaps for vibration in helicopter rotors- practical design considerations for
implementation Second Workshop on Smart Structures and Materials University
of Maryland at College Park , Sept. 5-7 1995

Hurt, M.K., and Wereley, N.M., “Controllable fluid dampers for helicopter rotor
stability augmentation”, Proceedings of the 37" AIAA/ASME/AHS Adaptive
Structures Forum, Salt Lake City, Utah, April, 1996.

Gandhi, F., Chopra, L, “Analysis of bearingless main motor aeroelasticity using

an improved time domain nonlinear elastomeric damper model”, Journal of the
American Helicopter Society, Vol. 41, No. 3, July 1996.

38



1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Gavin, H. P., Hose, Y. D., and Hanson, R. D, "Design and control of
electrorheological dampers."1st World Conference on Structural Control., Los
Angeles, Ca. Aug. 1994

Goodman R. K. and Millott, T. A., "Design, development, and flight testing of the
active vibration control system for the Sikosky s-92." America Helicopter Society
56" Annual Forum, Virginia Beach, Virginia May 2-4 2000

Kamath, G. M., Wereley, N. M., and Jolly, M. R., “Characterization of
Magnetorheological Helicopter Lag Dampers”, Journal of the American
Helicopter Society, July, 1999.

Kretz, M., “Relaxation of rotor limitations by feedback control”, Proceedings of
the 33 Annual National Forum of the American Helicopter Society, May 1977.

Kobori, T. Takahashi, M., Nasu, T., Niwa, N., and Ogasawara, K., "Seismic
response controlled structure with active variable stiffness system,” Earthquake
Engineering and Structural Dynamics, V. 22, pp.925-941., 1993.

Lee, G. C., Liang, Z., and Tong, M., “Innervated Structures,” Proc. of 1* World
Structural Control Conference, Pasadena, CA., 1994.

Lesieutre, G.A., and Lee, U., “A finite element for beams having segmented
active constrained layers with frequency-dependent viscoelastics”, Smart
Materials and Structures, August, 1996.

Liang, Z., Tong, M., and Lee, G. C., “A real-time Structural Parameter
Modification (RSPM) Approach for random Vibration Reduction: Part I-
Principle,” Journal of Probabilistic Engineering Mechanics, June 1999, PP349-
362. )

Liang, Z., Tong, M., and Lee, G. C., “A real-time Structural Parameter
Modification (RSPM) Approach for random Vibration Reduction: Part 1I-
Experimental Verification,” Journal of Probabilistic Engineering Mechanics, June
1999, PP362-385.

Lyndon, I, "Application of adaptive feedforward algorithms to helicopter
vibration control” Proc. Of the Recent Advances in active control of sound and
vibration conference, Virginia Polytechnic Institute, April 1991

Makris, N., Dargush, G. F., and Constantinou, M. C., “Dynamic Analysis of
Viscoelastic Fluid Dampers,” J. of Engineering Mechanics, ASCE, V.121 N. 10,
pp 1114-1121. 1995.

McGuire, D.P., “Fluidlastic dampers and isolators for vibration control in
helicopters”, Proceedings of the 50" AHS Forum, Washington, D.C., may 1994,

39



24.

25.

27.

28.

29.

30.

_Miao, W., Kottapalli, S.B.R., and Frye, HM., “Flight demonstration of higher

harmonic control (HHC) on the S-76", Proceedings of the 42™ Annual National
Forum of the American Helicopter Society, Washington D.C., June 1986.

Milgram, J, Chopra, 1., and Straub F. “A comprehensive Rotorcraft Aeroelastic
Analysis with Trailing Edge Flap Model: Validation with Experimental Data”,
American Helicopter Society 52" Annual Forum, Washington, D.C., June 4-6,
1996.

Mizuno, T., Kobori, T., Hirai, J., Matsunaga, Y., and Niwa, N., " Development of
adjustable hydraulic dampers for seismic response control of large structure,”
ASME PVP Conference, PVP -229, 163-170. 1992

_Nath, S., and Wereley, N.M., “Active constrained layer damping for rotorcraft

flex beams”, Proceedings of the 36™ AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, New Orleans, LA, April 1995.

Panda, B., Mychalowycz, E., and Tarzanin, F.J., “Application of passive dampers
to modern helicopters”, Journal of Smart Materials and Structures, Vol. 5, Oct.
1996.

Pattern, W. N., Sack, R. L. and He, Q, (1996), "Controlled seismicactive
hydraulic vibration absorber for bridges,” J. of structural engineering, ASCE, V.
122 N. 2, pp. 187-192.

Payne, P.R., “Higher harmonic rotor control”, Aircraft Engineering, 30(354),
P222-226, August 1958.

Richter, P., and Blaas, A., “Full scale wind tunnel investigation of an individual

blade control system for the Bol0O5 hingeless rotor”, Proceedings of the 19"
European Rotorcraft Forum, Como, Italy, September 1993.

40



Controller

Hydraulic
Valve(s)

i
|
1
|
\ 4

— Plant -
fnput Output

Figure 2.1 Active Control Diagram

Cont-foller

r» Plant >
A. Input B. Output

Figure 2.2 Conventional Control Diagram

—————pt Controller
A
Functional
Switch
|
|
|
|
h 4
—L—> Plant >
Input Output
Figure 2.3 RSPM

41



Figure 2.4 Idealized RSPM System
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Figure 5.1 Shaker Setup
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Figure 5.3 Experimental Setup

Figure 5.4 Damper Installation
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Figure 5.18 Comparison of the Force-displacement Relation (4 Hz)
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Displacement of Response (LYDT)
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Figure 5.19 Displacement of Blade in the Two States

Displacement Comparison for Accelerometer
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Figure 5.20 Displacement Comparisons for Accelerometer in the Two States
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Displacement of Damper
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Figure 5.21 Displacement of Damper in the Two States
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Figure 22 Displacement Comparison of Damper in Auto Sweeping Test
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Figure 23 Displacement Comparison of Blade in Auto Sweeping Test
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